pyriemann.utils.base.ddexpm¶
- pyriemann.utils.base.ddexpm(X, Cref)¶
Directional derivative of the matrix exponential.
The directional derivative of the matrix exponential at a SPD/HPD matrix \(\mathbf{C}_{\text{ref}}\) in the direction of a SPD/HPD matrix \(\mathbf{X}\) is defined as Eq. (V.13) in [1]:
\[\text{ddexpm}(\mathbf{X}, \mathbf{C}_{\text{ref}}) = \mathbf{V} \left( \text{fddexpm}(\mathbf{\Lambda}) \odot \mathbf{V}^H \mathbf{X} \mathbf{V} \right) \mathbf{V}^H\]where \(\mathbf{\Lambda}\) is the diagonal matrix of eigenvalues of and \(\mathbf{V}\) the eigenvectors of \(\mathbf{C}_{\text{ref}}\), and \(\text{fddexpm}\) the first divided difference of the exponential function.
- Parameters:
- Xndarray, shape (…, n, n)
SPD/HPD matrices.
- Crefndarray, shape (n, n)
SPD/HPD matrix.
- Returns:
- ddexpmndarray, shape (…, n, n)
Directional derivative of the matrix exponential.
Notes
Added in version 0.8.
References
[1]Matrix Analysis R. Bhatia, Springer, 1997