pyriemann.utils.base.ddlogm¶
- pyriemann.utils.base.ddlogm(X, Cref)¶
Directional derivative of the matrix logarithm.
The directional derivative of the matrix logarithm at a SPD/HPD matrix \(\mathbf{C}_{\text{ref}}\) in the direction of a SPD/HPD matrix \(\mathbf{X}\) is defined as Eq. (V.13) in [1]:
\[\text{ddlogm}(\mathbf{X}, \mathbf{C}_{\text{ref}}) = \mathbf{V} \left( \text{fddlogm}(\mathbf{\Lambda}) \odot \mathbf{V}^H \mathbf{X} \mathbf{V} \right) \mathbf{V}^H\]where \(\mathbf{\Lambda}\) is the diagonal matrix of eigenvalues of and \(\mathbf{V}\) the eigenvectors of \(\mathbf{C}_{\text{ref}}\), and \(\text{fddlogm}\) the first divided difference of the logarithm function.
- Parameters:
- Xndarray, shape (…, n, n)
SPD/HPD matrices.
- Crefndarray, shape (n, n)
SPD/HPD matrix.
- Returns:
- ddlogmndarray, shape (…, n, n)
Directional derivative of the matrix logarithm.
Notes
Added in version 0.8.
References
[1]Matrix Analysis R. Bhatia, Springer, 1997