pyriemann.utils.mean.mean_logchol¶
- pyriemann.utils.mean.mean_logchol(X, sample_weight=None)¶
Mean of SPD/HPD matrices according to the log-Cholesky metric.
Log-Cholesky mean \(\mathbf{M}\) is \(\mathbf{M} = \mathbf{L} \mathbf{L}^H\), where \(\mathbf{L}\) is computed as [1]:
\[\mathbf{L} = \sum_i w_i \text{lower}(\text{chol}(\mathbf{X}_i)) + \exp \left( \sum_i w_i \log(\text{diag}(\text{chol}(\mathbf{X}_i))) \right)\]- Parameters:
- Xndarray, shape (n_matrices, n, n)
Set of SPD/HPD matrices.
- sample_weightNone | ndarray, shape (n_matrices,), default=None
Weights for each matrix. If None, it uses equal weights.
- Returns:
- Mndarray, shape (n, n)
Log-Cholesky mean.
See also
Notes
Added in version 0.7.
References
[1]Riemannian geometry of symmetric positive definite matrices via Cholesky decomposition Z. Lin. SIAM J Matrix Anal Appl, 2019, 40(4), pp. 1353-1370.