pyRiemann: Biosignals classification with Riemannian geometryΒΆ

pyRiemann is a Python machine learning package based on scikit-learn API. It provides a high-level interface for processing and classification of multivariate time series through the Riemannian geometry of symmetric positive definite (SPD) matrices.

pyRiemann aims at being a generic package for multivariate time series classification but has been designed around multichannel biosignals (like EEG, MEG or EMG) manipulation applied to brain-computer interface (BCI), transforming multichannel time series into covariance matrices, and classifying them using the Riemannian geometry of SPD matrices.

For a brief introduction to the ideas behind the package, you can read the introductory notes. More practical information is on the installation page. You may also want to browse the example gallery to get a sense for what you can do with pyRiemann and API reference to find out how.

To see the code or report a bug, please visit the github repository.