Classifier comparison

A comparison of several classifiers on low-dimensional synthetic datasets, adapted to SPD matrices from [1]. The point of this example is to illustrate the nature of decision boundaries of different classifiers, used with different metrics [2]. This should be taken with a grain of salt, as the intuition conveyed by these examples does not necessarily carry over to real datasets.

The 3D plots show training matrices in solid colors and testing matrices semi-transparent. The lower right shows the classification accuracy on the test set.

# Authors: Quentin Barthélemy
#
# License: BSD (3-clause)

from functools import partial
from time import time

import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import numpy as np
from sklearn.model_selection import train_test_split

from pyriemann.classification import (
    MDM,
    KNearestNeighbor,
    SVC,
)
from pyriemann.datasets import make_matrices, make_gaussian_blobs
@partial(np.vectorize, excluded=["clf"])
def get_proba(cov_00, cov_01, cov_11, clf):
    cov = np.array([[cov_00, cov_01], [cov_01, cov_11]])
    with np.testing.suppress_warnings() as sup:
        sup.filter(RuntimeWarning)
        return clf.predict_proba(cov[np.newaxis, ...])[0, 1]


def plot_classifiers(metric):
    figure = plt.figure(figsize=(12, 10))
    figure.suptitle(f"Compare classifiers with metric='{metric}'", fontsize=16)
    i = 1

    # iterate over datasets
    for ds_cnt, (X, y) in enumerate(datasets):
        # split dataset into training and test part
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=0.4, random_state=42
        )

        x_min, x_max = X[:, 0, 0].min(), X[:, 0, 0].max()
        y_min, y_max = X[:, 0, 1].min(), X[:, 0, 1].max()
        z_min, z_max = X[:, 1, 1].min(), X[:, 1, 1].max()

        # just plot the dataset first
        ax = plt.subplot(n_datasets, n_classifs + 1, i, projection="3d")
        if ds_cnt == 0:
            ax.set_title("Input data")
        # Plot the training points
        ax.scatter(
            X_train[:, 0, 0],
            X_train[:, 0, 1],
            X_train[:, 1, 1],
            c=y_train,
            cmap=cm_bright,
            edgecolors="k"
        )
        # Plot the testing points
        ax.scatter(
            X_test[:, 0, 0],
            X_test[:, 0, 1],
            X_test[:, 1, 1],
            c=y_test,
            cmap=cm_bright,
            alpha=0.6,
            edgecolors="k"
        )
        ax.set_xlim(x_min, x_max)
        ax.set_ylim(y_min, y_max)
        ax.set_zlim(z_min, z_max)
        ax.set_xticklabels(())
        ax.set_yticklabels(())
        ax.set_zticklabels(())
        i += 1

        rx = np.arange(x_min, x_max, (x_max - x_min) / 50)
        ry = np.arange(y_min, y_max, (y_max - y_min) / 50)
        rz = np.arange(z_min, z_max, (z_max - z_min) / 50)

        print(f"Dataset n°{ds_cnt+1}")

        # iterate over classifiers
        for name, clf in zip(names, classifiers):
            ax = plt.subplot(n_datasets, n_classifs + 1, i, projection="3d")

            clf.set_params(**{"metric": metric})
            t0 = time()
            clf.fit(X_train, y_train)
            t1 = time() - t0

            t0 = time()
            score = clf.score(X_test, y_test)
            t2 = time() - t0

            print(
                f" {name}:\n  training time={t1:.5f}\n  test time    ={t2:.5f}"
            )

            # Plot the decision boundaries for horizontal 2D planes going
            # through the mean value of the third coordinates
            xx, yy = np.meshgrid(rx, ry)
            zz = get_proba(xx, yy, X[:, 1, 1].mean()*np.ones_like(xx), clf=clf)
            zz = np.ma.masked_where(~np.isfinite(zz), zz)
            ax.contourf(xx, yy, zz, zdir="z", offset=z_min, cmap=cm, alpha=0.5)

            xx, zz = np.meshgrid(rx, rz)
            yy = get_proba(xx, X[:, 0, 1].mean()*np.ones_like(xx), zz, clf=clf)
            yy = np.ma.masked_where(~np.isfinite(yy), yy)
            ax.contourf(xx, yy, zz, zdir="y", offset=y_max, cmap=cm, alpha=0.5)

            yy, zz = np.meshgrid(ry, rz)
            xx = get_proba(X[:, 0, 0].mean()*np.ones_like(yy), yy, zz, clf=clf)
            xx = np.ma.masked_where(~np.isfinite(xx), xx)
            ax.contourf(xx, yy, zz, zdir="x", offset=x_min, cmap=cm, alpha=0.5)

            # Plot the training points
            ax.scatter(
                X_train[:, 0, 0],
                X_train[:, 0, 1],
                X_train[:, 1, 1],
                c=y_train,
                cmap=cm_bright,
                edgecolors="k"
            )
            # Plot the testing points
            ax.scatter(
                X_test[:, 0, 0],
                X_test[:, 0, 1],
                X_test[:, 1, 1],
                c=y_test,
                cmap=cm_bright,
                edgecolors="k",
                alpha=0.6
            )

            if ds_cnt == 0:
                ax.set_title(name)
            ax.text(
                1.3 * x_max,
                y_min,
                z_min,
                ("%.2f" % score).lstrip("0"),
                size=15,
                horizontalalignment="right",
                verticalalignment="bottom"
            )
            ax.set_xlim(x_min, x_max)
            ax.set_ylim(y_min, y_max)
            ax.set_zlim(z_min, z_max)
            ax.set_xticks(())
            ax.set_yticks(())
            ax.set_zticks(())

            i += 1

    plt.show()

Classifiers and Datasets

names = [
    "MDM",
    "k-NN",
    "SVC",
]
classifiers = [
    MDM(),
    KNearestNeighbor(n_neighbors=3),
    SVC(probability=True),
]
n_classifs = len(classifiers)

rs = np.random.RandomState(2022)
n_matrices, n_channels = 50, 2
y = np.concatenate([np.zeros(n_matrices), np.ones(n_matrices)])

datasets = [
    (
        np.concatenate([
            make_matrices(
                n_matrices, n_channels, "spd", rs, evals_low=10, evals_high=14
            ),
            make_matrices(
                n_matrices, n_channels, "spd", rs, evals_low=13, evals_high=17
            )
        ]),
        y
    ),
    (
        np.concatenate([
            make_matrices(
                n_matrices, n_channels, "spd", rs, evals_low=10, evals_high=14
            ),
            make_matrices(
                n_matrices, n_channels, "spd", rs, evals_low=11, evals_high=15
            )
        ]),
        y
    ),
    make_gaussian_blobs(
        2*n_matrices, n_channels, random_state=rs, class_sep=1., class_disp=.5,
        n_jobs=4
    ),
    make_gaussian_blobs(
        2*n_matrices, n_channels, random_state=rs, class_sep=.5, class_disp=.5,
        n_jobs=4
    )
]
n_datasets = len(datasets)

cm = plt.cm.RdBu
cm_bright = ListedColormap(["#FF0000", "#0000FF"])

Classifiers with Riemannian metric

plot_classifiers("riemann")
Compare classifiers with metric='riemann', Input data, MDM, k-NN, SVC
Dataset n°1
 MDM:
  training time=0.00125
  test time    =0.00266
 k-NN:
  training time=0.00003
  test time    =0.06113
 SVC:
  training time=0.00211
  test time    =0.00100
Dataset n°2
 MDM:
  training time=0.00132
  test time    =0.00267
 k-NN:
  training time=0.00004
  test time    =0.06153
 SVC:
  training time=0.00212
  test time    =0.00100
Dataset n°3
 MDM:
  training time=0.00245
  test time    =0.00511
 k-NN:
  training time=0.00003
  test time    =0.23934
 SVC:
  training time=0.00343
  test time    =0.00108
Dataset n°4
 MDM:
  training time=0.00286
  test time    =0.00471
 k-NN:
  training time=0.00003
  test time    =0.24037
 SVC:
  training time=0.00338
  test time    =0.00116

Classifiers with Log-Euclidean metric

plot_classifiers("logeuclid")
Compare classifiers with metric='logeuclid', Input data, MDM, k-NN, SVC
Dataset n°1
 MDM:
  training time=0.00041
  test time    =0.00492
 k-NN:
  training time=0.00003
  test time    =0.13090
 SVC:
  training time=0.00139
  test time    =0.00098
Dataset n°2
 MDM:
  training time=0.00042
  test time    =0.00500
 k-NN:
  training time=0.00003
  test time    =0.13210
 SVC:
  training time=0.00144
  test time    =0.00104
Dataset n°3
 MDM:
  training time=0.00049
  test time    =0.00915
 k-NN:
  training time=0.00004
  test time    =0.52164
 SVC:
  training time=0.00174
  test time    =0.00108
Dataset n°4
 MDM:
  training time=0.00046
  test time    =0.00941
 k-NN:
  training time=0.00003
  test time    =0.52035
 SVC:
  training time=0.00180
  test time    =0.00118

Classifiers with Euclidean metric

plot_classifiers("euclid")
Compare classifiers with metric='euclid', Input data, MDM, k-NN, SVC
Dataset n°1
 MDM:
  training time=0.00019
  test time    =0.00097
 k-NN:
  training time=0.00003
  test time    =0.01412
 SVC:
  training time=0.00094
  test time    =0.00081
Dataset n°2
 MDM:
  training time=0.00022
  test time    =0.00098
 k-NN:
  training time=0.00005
  test time    =0.01409
 SVC:
  training time=0.00130
  test time    =0.00080
Dataset n°3
 MDM:
  training time=0.00019
  test time    =0.00146
 k-NN:
  training time=0.00003
  test time    =0.05320
 SVC:
  training time=0.00125
  test time    =0.00081
Dataset n°4
 MDM:
  training time=0.00021
  test time    =0.00141
 k-NN:
  training time=0.00003
  test time    =0.05283
 SVC:
  training time=0.00177
  test time    =0.00076

References

Total running time of the script: (5 minutes 9.251 seconds)

Gallery generated by Sphinx-Gallery