pyriemann.regression.KNearestNeighborRegressor¶
- class pyriemann.regression.KNearestNeighborRegressor(n_neighbors=5, metric='riemann')¶
Regression by k-nearest-neighbors.
Regression by k-nearest neighbors (k-NN). For each point of the test set, the pairwise distance to each element of the training set is estimated. The value is calculated according to the softmax average w.r.t. distance of the k-nearest neighbors.
DISCLAIMER: This is an unpublished algorithm.
- Parameters:
- n_neighborsint, default=5
Number of neighbors.
- metricstring | dict, default=’riemann’
The type of metric used for distance estimation. See distance for the list of supported metric.
Notes
New in version 0.3.
- Attributes:
- values_ndarray, shape (n_matrices,)
Training target values.
- covmeans_ndarray, shape (n_matrices, n_channels, n_channels)
Training set of SPD matrices.
- __init__(n_neighbors=5, metric='riemann')¶
Init.
- fit(X, y, sample_weight=None)¶
Fit (store the training data).
- Parameters:
- Xndarray, shape (n_matrices, n_channels, n_channels)
Set of SPD matrices.
- yndarray, shape (n_matrices,)
Target values for each matrix.
- sample_weightNone
Not used, here for compatibility with sklearn API.
- Returns:
- selfKNearestNeighborRegressor instance
The KNearestNeighborRegressor instance.
- fit_predict(X, y)¶
Fit and predict in one function.
- fit_transform(X, y=None, **fit_params)¶
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
- **fit_paramsdict
Additional fit parameters.
- Returns:
- X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
- get_metadata_routing()¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- predict(X)¶
Get the predictions.
- Parameters:
- Xndarray, shape (n_matrices, n_channels, n_channels)
Set of SPD matrices.
- Returns:
- predndarray, shape (n_matrices,)
Predictions for each matrix according to the closest neighbors.
- predict_proba(X)¶
Predict proba using softmax of negative squared distances.
- Parameters:
- Xndarray, shape (n_matrices, n_channels, n_channels)
Set of SPD matrices.
- Returns:
- probndarray, shape (n_matrices, n_classes)
Probabilities for each class.
- score(X, y)¶
Return the coefficient of determination of the prediction.
- Parameters:
- Xndarray, shape (n_matrices, n_channels, n_channels)
Test set of SPD matrices.
- yndarray, shape (n_matrices,)
True values for each matrix.
- Returns:
- scorefloat
R2 of self.predict(X) wrt. y.
Notes
New in version 0.4.
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') KNearestNeighborRegressor ¶
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter infit
.
- Returns:
- selfobject
The updated object.
- set_output(*, transform=None)¶
Set output container.
See sphx_glr_auto_examples_miscellaneous_plot_set_output.py for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”}, default=None
Configure output of transform and fit_transform.
“default”: Default output format of a transformer
“pandas”: DataFrame output
None: Transform configuration is unchanged
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') KNearestNeighborRegressor ¶
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- Returns:
- selfobject
The updated object.
- transform(X)¶
Get the distance to each centroid.
- Parameters:
- Xndarray, shape (n_matrices, n_channels, n_channels)
Set of SPD matrices.
- Returns:
- distndarray, shape (n_matrices, n_classes)
The distance to each centroid according to the metric.