pyriemann.estimation.Covariances

class pyriemann.estimation.Covariances(estimator='scm', **kwds)

Estimation of covariance matrices.

Perform a simple covariance matrix estimation for each given input.

Parameters:
estimatorstring, default=”scm”

Covariance matrix estimator, see pyriemann.utils.covariance.covariances().

**kwdsdict

Any further parameters are passed directly to the covariance estimator.

__init__(estimator='scm', **kwds)

Init.

fit(X, y=None)

Fit.

Do nothing. For compatibility purpose.

Parameters:
Xndarray, shape (n_matrices, n_channels, n_times)

Multi-channel time-series.

yNone

Not used, here for compatibility with sklearn API.

Returns:
selfCovariances instance

The Covariances instance.

fit_transform(X, y=None)

Fit and transform in a single function.

Parameters:
Xndarray, shape (n_matrices, n_channels, n_times)

Multi-channel time-series.

yNone

Not used, here for compatibility with sklearn API.

Returns:
X_newndarray, shape (n_matrices, n_channels, n_channels)

Covariance matrices.

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

set_output(*, transform=None)

Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters:
transform{“default”, “pandas”, “polars”}, default=None

Configure output of transform and fit_transform.

  • “default”: Default output format of a transformer

  • “pandas”: DataFrame output

  • “polars”: Polars output

  • None: Transform configuration is unchanged

Added in version 1.4: “polars” option was added.

Returns:
selfestimator instance

Estimator instance.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.

transform(X)

Estimate covariance matrices.

Parameters:
Xndarray, shape (n_matrices, n_channels, n_times)

Multi-channel time-series.

Returns:
X_newndarray, shape (n_matrices, n_channels, n_channels)

Covariance matrices.

Examples using pyriemann.estimation.Covariances

Online Artifact Detection with Riemannian Potato

Online Artifact Detection with Riemannian Potato

Online Artifact Detection with Riemannian Potato Field

Online Artifact Detection with Riemannian Potato Field

Augmented Covariance Matrix

Augmented Covariance Matrix

Ensemble learning on functional connectivity

Ensemble learning on functional connectivity

Frequency band selection on the manifold for motor imagery classification

Frequency band selection on the manifold for motor imagery classification

Motor imagery classification

Motor imagery classification

Offline SSVEP-based BCI Multiclass Prediction

Offline SSVEP-based BCI Multiclass Prediction

Visualization of SSVEP-based BCI Classification in Tangent Space

Visualization of SSVEP-based BCI Classification in Tangent Space

Compare covariance and kernel estimators

Compare covariance and kernel estimators

Robust covariance estimation

Robust covariance estimation

Classify fNIRS data with block diagonal matrices for HbO and HbR

Classify fNIRS data with block diagonal matrices for HbO and HbR

Segmentation of hyperspectral image with Riemannian geometry

Segmentation of hyperspectral image with Riemannian geometry

Segmentation of SAR image with Riemannian geometry

Segmentation of SAR image with Riemannian geometry

One-way Manova

One-way Manova

One-way Manova with time

One-way Manova with time

Motor imagery classification by transfer learning

Motor imagery classification by transfer learning