pyriemann.estimation.Coherences¶
- class pyriemann.estimation.Coherences(window=128, overlap=0.75, fmin=None, fmax=None, fs=None, coh='ordinary')¶
Estimation of squared coherence matrices.
Squared coherence matrices estimation [1]. This method will return a 4-d array with a squared coherence matrix estimation for each input and in each frequency bin of the FFT.
- Parameters:
- windowint, default=128
The length of the FFT window used for spectral estimation.
- overlapfloat, default=0.75
The percentage of overlap between window.
- fminfloat | None, default=None
the minimal frequency to be returned.
- fmaxfloat | None, default=None
The maximal frequency to be returned.
- fsfloat | None, default=None
The sampling frequency of the signal.
- coh{“ordinary”, “instantaneous”, “lagged”, “imaginary”}, default=”ordinary”
The coherence type:
“ordinary” for the ordinary coherence, defined in Eq.(22) of [1]; this normalization of cross-spectral matrices captures both in-phase and out-of-phase correlations. However it is inflated by the artificial in-phase (zero-lag) correlation engendered by volume conduction.
“instantaneous” for the instantaneous coherence, Eq.(26) of [1], capturing only in-phase correlation.
“lagged” for the lagged-coherence, Eq.(28) of [1], capturing only out-of-phase correlation (not defined for DC and Nyquist bins).
“imaginary” for the imaginary coherence [2], Eq.(0.16) of [3], capturing out-of-phase correlation but still affected by in-phase correlation.
- Attributes:
- freqs_ndarray, shape (n_freqs,)
If transformed, the frequencies associated to cospectra. None if
fs
is None.
See also
Notes
Added in version 0.3.
References
[1] (1,2,3,4)Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition R. Pascual-Marqui. Technical report, 2007.
[2]Identifying true brain interaction from EEG data using the imaginary part of coherency G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, M. Hallett. Clinical Neurophysioly, Volume 115, Issue 10, October 2004, Pages 2292-2307
[3]Non-Parametric Synchronization Measures used in EEG and MEG M. Congedo. Technical Report, 2018.
- __init__(window=128, overlap=0.75, fmin=None, fmax=None, fs=None, coh='ordinary')¶
Init.
- fit(X, y=None)¶
Fit.
Do nothing. For compatibility purpose.
- Parameters:
- Xndarray, shape (n_matrices, n_channels, n_times)
Multi-channel time-series.
- yNone
Not used, here for compatibility with sklearn API.
- Returns:
- selfCrossSpectra instance
The CrossSpectra instance.
- fit_transform(X, y=None)¶
Fit and transform in a single function.
- Parameters:
- Xndarray, shape (n_matrices, n_channels, n_times)
Multi-channel time-series.
- yNone
Not used, here for compatibility with sklearn API.
- Returns:
- X_newndarray, shape (n_matrices, n_channels, n_channels, n_freqs)
Cross-spectral matrices for each input and for each frequency bin.
- get_metadata_routing()¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_output(*, transform=None)¶
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”, “polars”}, default=None
Configure output of transform and fit_transform.
“default”: Default output format of a transformer
“pandas”: DataFrame output
“polars”: Polars output
None: Transform configuration is unchanged
Added in version 1.4: “polars” option was added.
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- transform(X)¶
Estimate the squared coherences matrices.
- Parameters:
- Xndarray, shape (n_matrices, n_channels, n_times)
Multi-channel time-series.
- Returns:
- X_newndarray, shape (n_matrices, n_channels, n_channels, n_freqs)
Squared coherence matrices for each input and for each frequency bin.